Reducing the Textile Environmental Footprint with TENCEL®

J M Taylor

22nd International IFATCC Congress, Stresa, Italy
TENCEL® production - environmental

- Purest cellulosic fibre available; based on eucalyptus
- Wood pulp+water+solvent *in* ---- TENCEL® fiber+water+solvent *out*
- Solvent used is non-toxic (99.6% recycled)

- Full production in Mobile/US, Grimsby/UK, Heiligenkreuz/Austria
- Pilot plant in Lenzing/Austria
TENCEL® lyocell fiber production
LCA - Life cycle analysis of fibers

- Comprehensive evaluation of fibers
- Utrecht University, The Netherlands (Prof. M. Patel, Li Shen)
- Assessment of sustainability of Lenzing fibers in comparison to cotton, polyester and polypropylene.
- 11 environmentally relevant factors studied
- Peer studies confirm results

Result:
Environmental load of Lenzing fibers is significantly lower than that of cotton!
Up to 70% less required acreage

Required acreage for the production of 1 ton of fiber
Up to 20 times less water consumption

Water consumption in cubic meters per ton

- TENCEL® Austria: 263
- Lenzing Viscose® Asia: 319
- Lenzing Viscose® Austria: 445
- Lenzing Modal® Austria: 472
- Cotton USA and China: 5,730

Legend:
- Orange: Process water
- Green: Cooling water
- Blue: Surface water irrigation
- Brown: Groundwater irrigation
Life cycle analysis - relative environmental load per ton of fiber

- Global warming
- Consumption of non-renewable resources
- Human health
- Soil pollution
- Water pollution
- Air pollution
- Ozone layer depletion
- Acidification of air, water and soil
- Eutrophication

Bar chart showing the environmental load per ton of fiber for different materials:

- Cotton (USA and China): 10.00
- Polyester (Western Europe): 0.92
- Polypropylene (Western Europe): 0.73
- Lenzing Group average: 0.57

SIREA AICTC 2010
Awards

- VÖNIX Sustainability Index
- CSR Ranking Austria 2008
- Eco-Label of the European Commission
- Responsible Care
- Panda-Award (WWF Austria)
- DIN CERTO
- R.I.O. Award 2006
- ÖKOTEX
- European Environmental Award
- Nordic Swan
Efficiency in Dyeing & Finishing

- TENCEL® is the purest cellulosic fiber with no contamination like cotton seeds, heavy metals, waxes or sulphur therefore
  - Little or no scouring is needed in knitted fabrics
  - No bleaching
  - No mercerising

- TENCEL® shows very high dyeing efficiency allowing exceptional reduction of
  - Dyes
  - Salt
  - Alkaline
  - Water
  - Energy usage
  - Processing time
Cold Pad Batch Dyeing

Assess colour yield and alkali requirement

- Novocron C, Navy shade – Huntsman
- Comparisons made cotton versus Standard TENCEL® and TENCEL® A100
Cold Pad Batch

Navy Shade Huntsman

<table>
<thead>
<tr>
<th></th>
<th>Novocron C</th>
<th>Alkali</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cotton</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>TENCEL®</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>TENCEL® A100</td>
<td>70</td>
<td>30</td>
</tr>
</tbody>
</table>
Cold Pad Batch - Summary

About 70% of the dye is required on TENCEL® compared with cotton for the same shade.

15% less alkali is needed

TENCEL® results in 45% of the amount of residual unfixed colour than is seen with cotton.
Exhaust Dyeing

Assess dye and salt requirements

Compare TENCEL®, TENCEL® A100, TENCEL® LF and cotton

Commodity dyes, Remazol Ultra RGB & Levaifix CA (DyStar), Novocron LS and FN (Huntsman) and Synozol HB (Kisco)
Exhaust Dyeing

Dark Brown Shade DyStar

% owf

Dye Commodity  Salt Commodity  Remazol RGB  Salt RGB

Cotton  TENCEL®  TENCEL® A100  TENCEL® LF
Exhaust Dyeing

Navy Shade Huntsman

% owf

Novocron LS  Salt LS  Novocron FN  Salt FN

- Cotton
- TENCEL®
- TENCEL® A100

LENZING
Exhaust dyeing

![Bar chart showing dye yield comparison between different materials and colors.]

- **Dye Yield Synozol Kisco**
- **Yield v cotton**
- **Materials compared:**
  - COTTON
  - TENCEL A100
  - TENCEL LF
- **Colors compared:**
  - YELLOW HB
  - RED HB
  - DEEP RED HB
  - NAVY HB
Salt Usage
Comparison of Dye Wash off Behaviour

Baths represent:
Dye bath, 50°C, 50°C acid, 80°C, 98°C, 80°C, cold

TENCEL®
A100

Cotton
Reduced COD

COD in mg/l

- TENCEL Ultra RGB
- Cotton Ultra RGB
- TENCEL Commodity
- Cotton Commodity

0 200 400 600 800 1000 1200
Exhaust Dyeing Summary

- TENCEL® requires less than half of the amount of dye to achieve the same shade as cotton.
- You need only half the amount of salt on TENCEL®.
- Soda ash concentrations are also reduced by similar magnitude.
- The use of lower dye levels coupled with higher fixation levels means less unfixed dye on TENCEL® compared with cotton.
- TENCEL® results in only 30% of the level of residual colour compared with cotton.
- TENCEL® A100 results in only 20% of the level of residual colour.
## Water, energy and chemical demand

Jet Dyed Navy - Shade Remazol RGB - DyStar

<table>
<thead>
<tr>
<th></th>
<th>Cotton</th>
<th>TENCEL® A100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Time (mins)</td>
<td>649</td>
<td>375</td>
</tr>
<tr>
<td>Bath water (l)</td>
<td>16400</td>
<td>10000</td>
</tr>
<tr>
<td>Cooling Water (l)</td>
<td>21060</td>
<td>4260</td>
</tr>
<tr>
<td>Total Water (l)</td>
<td>37460</td>
<td>14260</td>
</tr>
<tr>
<td>Water / kg fabric (l)</td>
<td>187.3</td>
<td>71.3</td>
</tr>
<tr>
<td>Total Energy (MJ)</td>
<td>3639</td>
<td>1819</td>
</tr>
<tr>
<td>Energy / kg fabric (MJ)</td>
<td>18.12</td>
<td>9.10</td>
</tr>
<tr>
<td>Total Chemicals (kg)</td>
<td>260</td>
<td>121</td>
</tr>
<tr>
<td>Chemicals / kg fabric (kg)</td>
<td>1.3</td>
<td>0.61</td>
</tr>
<tr>
<td>Total Dye (kg)</td>
<td>7.35</td>
<td>3.3</td>
</tr>
<tr>
<td>Dye / kg fabric (kg)</td>
<td>0.036</td>
<td>0.016</td>
</tr>
</tbody>
</table>
Garment Appearance – Multiple Wash

- TENCEL A100
- COTTON
## Environmental Cost of a Black T-shirt
### Fibre manufacture (based on 250g)

<table>
<thead>
<tr>
<th></th>
<th>Cotton</th>
<th>TENCEL®</th>
<th>Cotton (Replacement)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water (l)</td>
<td>1430</td>
<td>66</td>
<td>4290</td>
</tr>
<tr>
<td>Energy (MJ)</td>
<td>10</td>
<td>11</td>
<td>30</td>
</tr>
<tr>
<td>CO2 (kg)</td>
<td>0.75</td>
<td>0.52</td>
<td>2.25</td>
</tr>
<tr>
<td>Land Use (m²)</td>
<td>3.4</td>
<td>0.52</td>
<td>10.2</td>
</tr>
</tbody>
</table>

Figures from LCA by Patel & Chen
Environmental Cost of a Black T-shirt
Fabric manufacture

Yarn spinning – TENCEL® has 20% less waste compared with cotton.

<table>
<thead>
<tr>
<th></th>
<th>Cotton</th>
<th>TENCEL®</th>
<th>Cotton (Replacement)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (MJ)</td>
<td>4.5</td>
<td>1.8</td>
<td>13.5</td>
</tr>
<tr>
<td>Water (l)</td>
<td>47</td>
<td>18</td>
<td>141</td>
</tr>
<tr>
<td>Chemical (g)</td>
<td>320</td>
<td>150</td>
<td>960</td>
</tr>
<tr>
<td>Dyestuff (g)</td>
<td>20</td>
<td>12</td>
<td>60</td>
</tr>
</tbody>
</table>
Conclusions

In exhaust dyeing, when compared to cotton, TENCEL® A100 can be dyed using approximately:

- Half the amount of dye to achieve the same shade
- Half the amount of chemicals
- Half the amount of water
- Half the amount of energy

This is achieved because of very mild scouring/bleaching requirements, high dye fixation and thus less unfixed dye to remove from low salt dye liquors.
Acknowledgements

Peter Collishaw and Roland Schamberger, DyStar
Erwin Miosga and Mike Heaton, Huntsman Textile Effects
Richard Straughan, Kisco
Andrew Thompson, CHT
Thank you for your attention!